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Abstract

Low-shot object counters estimate the number of objects in an image using few
or no annotated exemplars. Objects are localized by matching them to prototypes,
which are constructed by unsupervised image-wide object appearance aggregation.
Due to potentially diverse object appearances, the existing approaches often lead to
overgeneralization and false positive detections. Furthermore, the best-performing
methods train object localization by a surrogate loss, that predicts a unit Gaussian
at each object center. This loss is sensitive to annotation error, hyperparameters
and does not directly optimize the detection task, leading to suboptimal counts. We
introduce GeCo, a novel low-shot counter that achieves accurate object detection,
segmentation, and count estimation in a unified architecture. GeCo robustly gener-
alizes the prototypes across objects appearances through a novel dense object query
formulation. In addition, a novel counting loss is proposed, that directly optimizes
the detection task and avoids the issues of the standard surrogate loss. GeCo
surpasses the leading few-shot detection-based counters by ∼25% in the total count
MAE, achieves superior detection accuracy and sets a new solid state-of-the-art
result across all low-shot counting setups. The code is available on GitHub.

1 Introduction

Low-shot object counting considers estimating the number of objects of previously unobserved
category in the image, given only a few annotated exemplars (few-shot) or without any supervision
(zero-shot) [22]. The current state-of-the-art methods are predominantly based on density estima-
tion [4; 14; 32; 26; 22; 31; 7; 31]. These methods predict a density map over the image and estimate
the total count by summing the density.

While being remarkably robust for global count estimation, density outputs lack explainability such
as object location and size, which is crucial for many practical applications [33; 30]. This recently
gave rise to detection-based low-shot counters [20; 19; 35], which predict the object bounding boxes
and estimate the total count as the number of detections. Nevertheless, detection-based counting falls
behind the density-based methods in total count estimation, leaving a performance gap.

In detection-based counters, a dominant approach to identify locations of the objects in the image
involves construction of object prototypes from few (e.g., three) annotated exemplar bounding
boxes and correlating them with image features [20; 35; 19]. The exemplar construction process is
trained to account for potentially large diversity of object appearances in the image, often leading
to overgeneralization, which achieves a high recall, but is also prone to false positive detection.
Post-hoc detection verification methods have been considered [20; 35] to address the issue, but their
multi-stage formulation prevents exploiting the benefits of end-to-end training.

Currently, the best detection counters [20; 35] predict object locations based on the local maxima in
the correlation map. During training, the map prediction is supervised by a unit Gaussian placed on
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Figure 1: DAVE [20] predicts object centers (red dots) biased towards blob-like structures, leading to
incorrect partial detections of ants (bottom left), while GeCo(ours) addresses this with the new loss
(top left). CDETR [19] fails in densely populated regions (bottom right), while GeCo addresses this
with the new dense query formulation by prototype generalization (top right). Exploiting the SAM
backbone, GeCo delivers segmentations as well. Exemplars are denoted in blue.

each object center. However, the resulting surrogate loss is susceptible to the center annotation noise,
requires nontrivial heuristic choice of the Gaussian kernel size and in practice leads to detection
preference of compact blob-like structures (see Figure 1, column 1&2). Recently, DETR [1] inspired
counter was proposed to avoid this issue [19], however, it fails in densely populated regions even
though it applies a very large number of detection queries in a regular grid (see Figure 1, column
3&4).

We address the aforementioned challenges by proposing a new single-stage low-shot counter GeCo,
which is implemented as an add-on network for SAM [12] backbone. A single architecture is
thus trained for both few-shot and zero-shot setup, it enables counting by detection and provides
segmentation masks for each of the detected objects. Our first contribution is a dense object query
formulation, which applies a non-parametric model for image-wide prototype generalization (hence
GeCo) in the encoder, and decodes the queries into highly dense predictions. The formulation
simultaneously enables reliable detection in densely-populated regions (Figure 1, column 3&4) and
prevents prototype over-generalization, leading to an improved detection precision at a high recall.
Our second contribution is a new loss function for dense detection training that avoids the ad-hoc
surrogate loss with unit Gaussians, it directly optimizes the detection task, and leads to improved
detection not biased towards blob-like regions (Figure 1, column 1&2).

GeCo outperforms all detection-based counters on challenging benchmarks by 24% MAE and the
density-based long-standing winner [4] by 27% MAE, while delivering superior detection accuracy.
The method shows substantial robustness to the number of exemplars. In one-shot scenario, GeCo
outperforms the best detection method in 5% AP50, 45% MAE and by 14% in a zero-shot scenario.
GeCo is the first detection-based counter that outperforms density based counters in all measures by
using the number of detections as the estimator, and thus sets a milestone in low-shot detection-based
counting.

2 Related works

Traditional counting methods focus on predefined categories like vehicles[3], cells [5], people[15],
and polyps, [33] requiring extensive annotated training data and lacking generalization to other
categories, necessitating retraining or conceptual changes. Low-shot counting methods address this
limitation by estimating counts for arbitrary categories with minimal or no annotations, enabling
test-time adaptation.

With the proposal of the FSC147 dataset [24] low-shot counting methods emerged, which predict
global counts by summing over a predicted density maps. The first method [24] proposed an
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adaptation of a tracking backbone for density map regression. BMNet+ [26] tackled learning
representation and similarity metric, while SAFECount [32] introduced a new feature enhancement
module, improving appearance generalization. CounTR [14] utilized a vision transformer for image
feature extraction and a convolutional network for encoding the exemplar features. LOCA [4] argued
that exemplar shape information should be considered along with the appearance, and proposed an
iterative object prototype extraction module. This led to a simplified counter architecture that remains
a top-performer among density-based counters.

To improve explainability of the estimated counts and estimate object locations as well, detection-
based methods emerged. The first few-shot detection-based counter [19] was an extended transformer-
based object detector [2] with the ability to detect objects specified by the exemplars. Current
state-of-the-art DAVE [20] proposed a two-stage detect-and-verify paradigm for low-shot counting
and detection, wherein the first stage it generates object proposals with a high recall, but low precision,
which is improved by a subsequent verification step. PSECO [35] proposed a three-stage approach
called point-segment-and-count, which employs more involved proposal generation with better
detection accuracy and also applies a verification step to improve precision. Both DAVE and PSECO
are multi-stage methods that train a network for the surrogate task of predicting density maps for
object centers, from which the bounding boxes are predicted. Although detection-based counters offer
additional applicability, they fall behind the best density-based counters in global count estimation.

3 Single-stage low-shot object counting by detection and segmentation

Given an input image I ∈ RH0×W0×3 and a set of k exemplar bounding boxes BE = {bi}i=1:k

specifying the target category, the task is to predict bounding boxes BP = {bj}j=1:N for all target
category objects in I , with the object count estimated as N = |BP |.
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Figure 2: The architecture of the proposed single-stage low-shot counter GeCo.

The proposed detection-based counter GeCo pipeline proceeds as follows (see Figure 2). The image
is encoded by a SAM [12] backbone into f I ∈ Rh×w×d, where h = H0/r, w = W0/r and d is
number of feature channels. In the few-shot setup, two kinds of prototypes (appearance and shape) are
extracted from each annotated object exemplar. The appearance prototypes pA ∈ Rk×d are extracted
by RoI-pooling [9] features f I from the exemplar bounding boxes. Following [4], shape prototypes
pS ∈ Rk×d are extracted as well, by pS

i = Φ([Wbi
, Hbi

]), where Wbi
and Hbi

are the width and
height of the i-th exemplar bounding box, and Φ(·) is a small MLP network. The concatenation of
pA and pS yields p ∈ R2k×d prototypes.

Note, however, that in a zero-shot setup, exemplars are not provided and the task is to count the
majority-class objects in the image. In this setup, a single zero-shot prototype is constructed by
attending a pretrained objectness prototype pZ to the image features, i.e., p = CA(pZ , f I , f I), where
CA(a, b, c) is cross-attention [28] followed by a skip connection, with a, b and c as attention query,
key and value, respectively.

The prototypes p (either from few-shot or zero-shot setup) are then generalized across the image,
and dense object detection queries are constructed by the Dense query encoder (DQE, Section 3.1).
These are decoded into dense detections by the Dense query decoder (DQD, Section 3.2). The final
detections are extracted and refined by a post-processing step (Section 3.3). The aforementioned
modules are detailed in the following sections.
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3.1 Dense object query encoder (DQE)

To account for the variation of the object appearances in the image, the current state-of-the-art
[4; 20; 35] aims at constructing a small number of prototypes (e.g., three) that compactly encode the
object appearance variation in the image, often leading to overgeneralization and false detections. We
deviate from this paradigm by considering image-wide prototype generalization with a non-parametric
model that constructs w · h location-specific prototypes PNP

∈ Rw·h×d. Let P0 = f I be the initial
dense generalized prototypes (i.e., one for each location). The final dense generalized prototypes
PNP

are calculated by the following iterative adaptation via cross-attention

Pi = CA(Pi−1,p,p), (1)

where i ∈ {1, ..., NP }. Note that spatial encoding is not applied, to enable spatially-unbiased
information flow from the prototypes p to all locations.

Next, dense object queries are constructed from the generalized prototypes by the following iterations

Qj = CA(SA(f I),Qj−1,Qj−1), (2)

where j ∈ {1, ..., NQ}, Q0 = PNP
, and SA(·) is a self-attention followed by a skip connection to

adapt the input features to the current queries. In both cross- and self-attentions, positional encoding
is applied to enable location-dependent query construction. In the remainder of the paper, the dense
object queries QNQ

are denoted as Q for clarity

3.2 Dense object query decoder (DQD)

The dense queries Q from Section 3.1 are decoded into object detections by a dense object query
decoder (DQD). Note that the spatial reduction of image by the SAM backbone may lead to encoding
several small objects into the same query in Q. To address this, the object queries are first spatially
unpacked into high-resolution dense object queries i.e., QHR ∈ RH×W×d, where H = H0/2,
W = W0/2 and d is the number of feature channels. The unpacking process consists of three
convolutional upsampling stages, with each stage composed of a 3× 3 convolution, a Leaky ReLU
and a 2× bilinear upsampling. To facilitate unpacking of small objects, the features after the second
stage are concatenated by the SAM-HQ features [11] fHQ before feeding into the final stage.

Finally, the objectness score yO ∈ RH×W×1 is calculated by a simple transform, i.e., yO =
LRelu(WO ·QHR), where WO is a learned projection matrix and LReLU(·) is a Leaky ReLU. Each
query is also decoded into the object pose by a three-layer MLP, i.e., yBB = σ(MLP(QHR)), where
σ(·) is a sigmoid function and yBB ∈ RH×W×4 are bounding box parameters in the tlrb format [27].

3.3 Detections extraction and refinement

The final detections are extracted from yO and yBB as follows. Bounding box parameters are read out
from yBB at locations of local maxima on a thresholded yO (using a 3× 3 nonmaxima suppression,
NMS). The bounding boxes are refined by feeding them as prompts into a SAM decoder [12] on the
already computed backbone features f I . The boxes are refitted to the masks by min-max operation
and finally non-maxima suppression with IoU = 0.5 is applied to remove duplicate detections. This
process thus yields the predicted bounding boxes BP and their corresponding masks MP .

3.4 A novel loss for dense detection training

GeCotraining requires supervision on the dense objectness scores yO and the bounding box parame-
ters yBB . Ideally, a network should learn to predict points on objects that can be reliably detected
by a NMS, and also from which the bounding box parameters can be reliably predicted. We thus
propose a new dense object detection loss that pursues this property.

Following the detection step (Section 3.2) in the forward pass, a set of local maxima {i}i=1:NDET
is

identified by applying a NMS on yO and keeping all maxima higher than the median response, to
ensure detection redundancy. The maxima are then labelled as true positives (TP) and false positives
(FP) by applying Hungarian matching [13] between their bounding box parameters {yBB

i }i=1:NDET

and the ground truth bounding boxes {BGT
j }j=1:NGT

. To account for missed detections, centers of
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the non-matched ground truth bounding boxes are added to the list of local maxima and labeled as
false negatives (FN). The new training loss is thus defined as

L = −
∑
i∈TP

gIoU(yBB
i ,BGT

HUN(i)) +
∑

i∈TP∪FN

(yO
i − 1)2 +

∑
i∈FP

(yO
i − 0)2, (3)

where gIoU(·, ·) is the generalized IoU [25], and HUN(i) is the ground truth index matched with
the i-th predicted bounding box. Note that the new loss simultaneously optimizes the bounding box
prediction quality, promotes locations with better box prediction capacity that can be easily detected
by a NMS, and enables automatic hard-negative mining in the objectness score via FP identification.

4 Experiments

Implementation details.

Using the SAM [12] backbone, GeCo reduces the input image by a factor r = 16, and projects the
features into d = 256 channels (Section 3). In DQE (Section 3.1), NP = 3 iterations are applied in
prototype generalization (1) and NQ = 2 iterations in dense object query construction (2). Following
the established test-time practice [20; 19; 26], the input image is scaled to fit W0 = H0 = 1536 if
the average of the exemplars widths and heights is below 25 pixels, otherwise it is downscaled to
fit the average of the exemplar width and height to 80 pixels and zero-padded to W0 = H0 = 1024.
As in [20], the zero-shot GeCo is run twice, first to estimate the objects size and then again on the
resized image.

Training details. With the SAM backbone frozen, GeCo is pretrained with the classical loss [20]
for initialization and is then trained for 200 epochs with the proposed dense detection loss (3) using
a mini-batch size of 8, AdamW [16] optimizer, with initial learning rate set to 10−4, and weight
decay of 10−4. The training is done on 2 A100s GPUs with standard scale augmentation [20; 4] and
zero-padding images to 1024×1024 resolution. For the zero-shot setup, the few-shot GeCo is frozen
and only the zero-shot prototype extension is trained for 10 epochs. Thus the same trained network is
used in all low-shot setups.

Evaluation metrics and datasets. Standard datasets are used. The FSCD147 [19] is a detection-
oriented extension of the FSC147 [24], which contains 6135 images of 147 object classes, split into
3659 training, 1286 validation, and 1190 test images. The splits are disjoint such that target object
categories in test set are not observed in training. The objects are manually annotated by bounding
boxes in the test set [19], while in the train set, the bounding boxes are obtained from point estimates
by SAM [35]. For each image, three exemplars are provided. The second dataset is FSCD-LVIS [19],
derived from LVIS [8] and contains 377 categories. Specifically, the unseen-split is used (3959
training and 2242 test images), which ensures that test-time object categories are not observed during
training.

The standard evaluation protocol [24; 26; 32] with Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) is followed to evaluate the counting accuracy. Following [19], Average
Precision (AP) and Average Precision at IoU=50 (AP50) is used on the same output to evaluate the
detection accuracy.

4.1 Experimental Results

Few-shot counting and detection. GeCo is compared with state-of-the-art density-based counters
(which only estimate the total count) LOCA [4], CounTR [14], SAFECount [32], BMNet+ [26],
VCN [22], CFOCNet [31], MAML [7], FamNet [24] and CFOCNet [31], and with detection-based
counters C-DETR [19], SAM-C [18], PSECO [35], and DAVE [20], which also provide object
locations by bounding boxes. Results are summarized in Table 1.

GeCo outperforms both recent state-of-the-art detection-based counters DAVE [20] and PSECO [35]
by a 24% and 39% MAE, and a remarkable 27% and 51% RMSE on the test split, setting a new state-
of-the-art in detection-based counting. Notably, GeCo outperforms all single-stage density-based
counters (top part of Table 1) by a large margin, which makes it the first detection-based counter that
outperforms the longstanding total count estimation winner LOCA [4] by a remarkable 27% MAE
and 4% RMSE on test split. In this respect, GeCo closes the performance gap that has been present
for several years between state-of-the-art density-, and detection-based counters.
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Table 1: Few-shot density-based methods (top part) and detection-based methods (bottom part)
performances on the FSCD147 [19].

Validation set Test set

Method MAE (↓) RMSE(↓) AP(↑) AP50(↑) MAE(↓) RMSE(↓) AP(↑) AP50(↑)

GMN [17] ACCV18 29.66 89.81 - - 26.52 124.57 - -
MAML [7] ICML17 25.54 79.44 - - 24.90 112.68 - -
FamNet [24] CVPR21 23.75 69.07 - - 22.08 99.54 - -
CFOCNet [31] WACV21 21.19 61.41 - - 22.10 112.71 - -
BMNet+ [26] CVPR22 15.74 58.53 - - 14.62 91.83 - -
VCN [22] CVPRW22 19.38 60.15 - - 18.17 95.60 - -
SAFEC [32] WACV23 15.28 47.20 - - 14.32 85.54 - -
CounTR [14] BMVC22 13.13 49.83 - - 11.95 91.23 - -
LOCA [4]ICCV23 10.24 32.56 - - 10.79 56.97 - -

C-DETR [19] ECCV22 20.38 82.45 17.27 41.90 16.79 123.56 22.66 50.57
SAM-C [18] arXiv23 31.20 100.83 20.08 39.02 27.97 131.24 27.99 3 49.17
PSECO [35] CVPR24 15.31 3 68.36 3 32.12 2 60.02 3 13.05 3 112.86 3 42.98 2 73.33 2
DAVE [20] CVPR24 9.75 2 40.30 1 24.20 3 61.08 2 10.45 2 74.51 2 26.81 62.82 3
GeCo (ours) 9.52 1 43.00 2 33.51 1 62.51 1 7.91 1 54.28 1 43.42 1 75.06 1

In terms of detection performance, GeCo surpasses all state-of-the-art methods, including PSECO [35]
which uses both, SAM [12] and CLIP [21] backbones, by 1% AP, and 2% AP50. Note that GeCo
also outperforms PSECO in count prediction by a large margin (∼40%), which is crucial, as an
ideal detection counter should deliver both accurate total count prediction as well as feature good
object localization. In addition, GeCo also outperforms SAM-C, which is a low-shot counting and
detection extension of SAM by 70%/55% MAE/AP. To demonstrate the impact of the refinement
step in existing methods, we modified DAVE [20] by feeding predicted bounding boxes to SAM [12]
as prompts, which results in a GeCo-like box refinement. Compared to modified DAVE, GeCo
achieves 21% and 16% higher AP and AP50, respectively, indicating that the reason for the excellent
performance of GeCo lies in its architecture, rather than in segmentation-based refinement.

Figure 3 visualizes detections for qualitative analysis1. GeCo predicts bounding boxes of superior
quality for elongated objects (row 1), validating the selection of bounding box prediction locations.
On detecting complex, non-blob-like objects (row 2), GeCo outperforms concurrent methods, by
more accurately generalizing the prototypes. In densely populated scenes (row 3), GeCo achieves
higher accuracy in both count and bounding box predictions. In comparison with state-of-the-art,
GeCo features better object discrimination (row 4), which can be attributed to better prototype
generalization in DQE (Section 3.1) and hard negative mining in the new loss from Section 3.4.

We further evaluate GeCo on FSCD-LVIS [19]. Results in Table 2 show that GeCo outperforms the
best method by significant 178% and 73% in AP and AP50, respectively, and performs on-par in
terms of MAE. The experiment supports the results on FSCD147.

Table 2: Few-shot counting and detection on the FSCD-LVIS [19] ”unseen” split.

Count Detection

Method MAE(↓) RMSE(↓) AP(↑) AP50(↑)

FSDetView-PB [29] TPAMI22 28.99 40.08 1.03 2.89
AttRPN-PB [6] CVPR22 39.16 46.09 3.15 7.87
C-DETR [19] ECCV22 23.50 3 35.89 3 3.85 3 11.28 3
DAVE [20] CVPR24 15.47 2 25.95 1 4.12 2 14.16 2
GeCo (ours) 15.26 1 28.80 2 11.47 1 24.49 1

One-shot counting and detection. In the one-shot counting setup, a single exemplar is considered.
Table 3 shows comparison with the recent density- and detection-based methods. GeCo outperforms
all state-of-the-art single-stage density-based counters, outperforming LOCA1−shot [4] version
specifically trained for the one-shot setup, by a significant margin of 35% MAE and 20% RMSE on
validation and test split, respectively. GeCo also outperforms state-of-the-art method PSECO [35] by

1See supplementary material for more visualizations
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Figure 3: Compared with state-of-the-art few-shot detection-based counters DAVE [20], PSECO [35],
and C-DETR [19], GeCo delivers more accurate detections with less false positives and better global
counts. Exemplars are delineated with blue color, while segmentations are not shown for clarity.

4% AP and 5% AP50, and by significant 45% MAE and 49% RMSE on test split. These results show
that GeCo features remarkable robustness to the number of exemplars since a single network (without
re-training or fine-tuning) is used in both three- and one-shot setups. In particular, the performance
drops by only 2%/11% of MAE/RMSE and 1%/1% AP/AP50 on the test split between both setups.
In a one-shot setting, GeCo surpasses state-of-the-art three-shot models. Specifically, one-shot GeCo
achieves 22% and 20% lower MAE and RMSE, respectively, compared to three-shot DAVE, and
outperforms three-shot PSECO by 38% and 46% on the FSCD147 test set. These results highlight
the robustness of GeCo to the number of exemplars, demonstrating its ability to handle inputs with
lowered visual diversity.

Zero-shot counting and detection. Table 4 reports the results of the zero-shot GeCo compared
with best zero-shot variants of the density-based counters, LOCA [4], CounTR [14], RepRPN-
C [23], RCC [10] and with the zero-shot variant of the best detection-based counter DAVE [20].
GeCo outperforms DAVE [20] by a significant margin of 14% MAE and 6% RMSE on the test
set. Furthermore, it outperforms all density-based methods and sets a new state-of-the-art result on
FSC [24] benchmark, by outperforming the top-performer CounTR [14] by impressive 6% MAE on
the test set. Since the zero-shot variant of the recent detection-based counter PSECO [35] does not
exist, we include its prompt-based variant for complete evaluation (i.e., target object class is specified
by a text prompt). Even in this setup, the zero-shot GeCo outperforms the prompt-based PSECO
by 20% MAE 16% RMSE, and 2% AP50 demonstrating great robustness to different counting and
detection scenarios.

Mutliclass images. To further verify the robustness of the proposed method, we validate it on a
subset of FSCD147, that contain images with multiple object classes (FSCD147mul) [20]. Results in
Table 5 indicate that most state-of-the-art methods non-discriminatively count all objects in an image
due to prototype over-generalization. GeCo outperforms all single-stage density-, and detection-
based counters on multiclass images by at least 60%/67% in MAE/RMSE. This further verifies the
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Table 3: One-shot density-based methods (top) and detection-based methods (bottom) on the
FSCD147 [19].

Validation set Test set

Method MAE (↓) RMSE(↓) AP(↑) AP50(↑) MAE(↓) RMSE(↓) AP(↑) AP50(↑)

GMN [17] ACCV18 29.66 89.81 - - 26.52 124.57 - -
CFOCNet [31] WACV21 27.82 71.99 - - 28.60 123.96 - -
FamNet [24] CVPR21 26.55 77.01 - - 26.76 110.95 - -
BMNet+ [26] CVPR22 17.89 61.12 - - 16.89 96.65 - -
CounTR [14] BMVC22 13.15 49.72 - - 12.06 90.01 - -
LOCA1-shot [4] ICCV23 11.36 38.04 - - 12.53 75.32 - -

PSECO [35] CVPR24 18.31 3 80.73 3 31.47 2 58.53 2 14.86 3 118.64 3 41.63 2 70.87 2
DAVE1-shot [20] CVPR24 10.98 2 43.26 2 18.00 3 52.37 3 11.54 2 86.62 2 19.46 3 55.27 3
GeCo (ours) 9.97 1 37.85 1 32.82 1 61.31 1 8.10 1 60.16 1 43.11 1 74.31 1

Table 4: Zero-shot density-based methods (top part), and detection-based methods (bottom part) on
the FSCD147 [19]. The symbol ∗ denotes methods that also use text prompts as input.

Validation set Test set

Method MAE (↓) RMSE(↓) AP(↑) AP50(↑) MAE(↓) RMSE(↓) AP(↑) AP50(↑)

RepRPN-C [23] ACCV22 29.24 98.11 - - 26.66 129.11 - -
RCC [10] arXiv22 17.49 58.81 - - 17.12 104.5 - -
CounTR [14] BMVC22 17.40 70.33 - - 14.12 108.01 - -
LOCA [4] ICCV23 17.43 54.96 - - 16.22 103.96 - -

PSECO [35]∗ CVPR24 23.90 3 100.33 3 - - 16.58 3 129.77 3 41.14 2 69.03 2
DAVE [20] CVPR24 15.71 2 60.34 1 16.31 2 46.87 2 15.51 2 116.54 2 18.55 3 50.08 3
GeCo (ours) 14.81 1 64.95 2 31.04 1 58.30 1 13.30 1 108.72 1 41.27 1 70.09 1

robustness of the proposed architecture, which benefits from the hard-negative mining in the proposed
loss function, leads to more discriminative prototype construction and false positive reduction.

4.2 Ablation study

Dense object detection loss. To analyze the contribution of the new dense detection loss from
Section 3.4, we trained GeCo using the standard loss [20; 35] that forms the ground truth objectness
score by placing unit Gaussians on object centers – this variant is denoted by GeCoGauss. Table 6
shows that this leads to a substantial drop in total count estimation (38% RMSE, and 34% MAE)
as well as in object detection (6% AP, and 3% AP50). Qualitative results are provided in Figure 4.
As observed in columns 3 and 5, the classical unit-Gaussian-based loss [20; 35] forces the network
to predict object locations from the object centers, which are not necessarily optimal for bounding
box prediction. In contrast, the proposed dense detection loss enables the network to learn optimal
point prediction, which more accurately aggregates information of the object pose. Columns 1 and
2 indicate that the new loss leads to superior detection of objects composed of blob-like structures
avoiding false detections on individual object parts. Furthermore, the hard-negative mining integrated
in the new loss design leads to better discriminative power of the detections and subsequent reduction
of false positives (column 4).

Table 5: Performance on FSCD147 [19] test split, and its multiclass subset FSCD147mul.

FSCD147 FSCD147mul

Method MAE(↓) RMSE(↓) MAE(↓) RMSE(↓)

C-DETR [19] ECCV22 16.79 123.56 23.09 30.09
PSECO [35] CVPR24 13.05 112.86 25.73 44.95
LOCA [4] ICCV23 10.79 3 56.97 2 21.28 43.67
CounTR [14] BMVC22 11.95 91.23 14.56 3 27.41 3
DAVE [20] CVPR24 10.45 2 74.51 3 3.09 1 5.28 1
GeCo (ours) 7.91 1 54.28 1 5.88 2 9.17 2
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Table 6: Ablation study on the FSCD147 [19] validation split.

Counting Detection

Method MAE(↓) RMSE(↓) AP(↑) AP50(↑)

GeCo 9.52 43.00 33.51 62.51
GeCoGauss 12.79 59.33 31.43 60.73
GeCoHQ 10.04 47.11 33.08 62.50
GeCops 9.97 46.93 32.56 61.19
GeCoRef 10.26 43.33 24.63 61.57
GeCoQ 10.32 45.14 33.01 61.68
GeCoDETR 11.45 52.46 32.24 61.60

(1)                                                            (2)                                                   (3)                                                 (4)                                                            (5)
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Figure 4: Response maps (in yellow), and locations for bounding box predictions (red dots) when
using the proposed (first row) and the standard [20; 4; 35] (second row) training loss.

Architecture. To evaluate the impact of concatenating the SAM-HQ [11] features in the query
unpacking process in the DQD module (Section 3.2), we remove these features in GeCoHQ. Table 6
shows a counting performance drop 5% MAE and 10% RMSE. To validate the importance of
modeling exemplar shapes, i.e., width and height, with prototypes pS , we omit them in GeCo

pS .
We observe a substantial performance decrease of 5% MAE, and 9% RMSE. Finally, we remove
bounding box refinement in the detection refinement module (Section 3.3), and denote the variant as
GeCoRef. While this does not affect the global count estimation accuracy, we observe a 26% decrease
in AP and 2% decrease in AP50. It is worth noting, that bounding box refinement improves the
accuracy of predicted bounding boxes, however it does not enhance object presence detection.

To verify the importance of the DQE module (Section 3.1), we replace the dense object queries Q con-
struction step (2) with a standard self-attention, i.e., Q = SA(P)3×. This leads to a 8% MAE and 5%
RMSE performance drop, verifying the proposed approach. To evaluate the importance of using image
features as queries in (2), we change the object query construction to Qj = CA(SA(Qj−1), f

I , f I)
to follow a standard DETR [1]-like approach, and denote it as GeCoDETR. We observe a 20% MAE
and 22% RMSE decrease in counting performance.

5 Conclusion

We proposed GeCo, a novel single-stage low-shot counter that integrates accurate detection, seg-
mentation, and count prediction within a unified architecture, and covers all low-shot scenarios with
a single trained model. GeCo features remarkables dense object query formulation, and prototype
generalization across the image, rather than just into a few prototypes. It employs a novel loss
function specifically designed for detection tasks, avoiding the biases of traditional Gaussian-based
losses. The loss optimizes detection accuracy directly, leading to more precise detection and counting.
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The main limitation of the presented method is that it cannot process arbitrarily large images, due to
memory constraints, since it, as all current methods, operates globally. In future work, we will explore
local counting, incremental image-wide count aggregation, optimizing inference speed utilizing a
faster backbone [34].

Extensive analysis showcases that GeCo surpasses the best detection-based counters by approximately
25% in total count MAE, achieving state-of-the-art performance in a few-shot counting setup and
demonstrating superior detection capabilities. GeCo showcases remarkable robustness to the number
of provided exemplars, and sets a new state-of-the-art in one-shot as well as zero-shot counting.

Acknowledgements. This work was supported by Slovenian research agency program P2-0214 and
projects J2-2506, L2-3169, Z2-4459, J2-60054, and by supercomputing network SLING (ARNES,
EuroHPC Vega - IZUM).
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A Supplemental material

This supplementary material provides additional comparisons of GeCo with state-of-the-art under a
non-standard experiment, and provides additional qualitative examples.

Performance analysis on a non-standard experiment. The analysis of the detection methods in
Section 4 adheres to the standard evaluation protocol [19; 20], where a method predicts a set of
bounding boxes for each image. The estimated count is the total number of predicted bounding boxes,
and evaluated by the MAE/RMSE measures, while the detection accuracy is evaluated by AP/AP50
measures. Both measures are computed on the same set of output bounding boxes.

However, in the PSECO [35] paper, the reported evaluation deviated from the standard one in an
important detail. Namely different outputs were evaluated under MAE/RMSE and AP/AP50 to fully
evaluate the different properties of the method. AP/AP50 was computed in all output bounding
boxes, while the MAE/RMSE were computed on a subset of the boxes, obtained by thresholding
the response score. In Section 4, we evaluated all methods, including PSECO under the standard
experiment. Nevertheless, we additionally report GeCo evaluated under the said non-standard PSECO
experiment in Table 7.

Even in this setup, GeCo outperforms PSECO by 4%/4% AP/AP50, and 1%/2% AP/AP50, on
validation and test set, respectively, again with a substantially lower global count errors (∼50%
MSE/RMSE reduction). These results shed an important insight. A method producing false positives,
which increase the count errors and reduce its usefulness for counting, might achieve good detection-
oriented performance measures. Thus for counting performance evaluation, the MAE/RMSE should
be considered primary measures, while AP/AP50 should be secondary, as they are less strict towards
false positive detections.

Table 7: Few-shot detection-based counting evaluation on FSCD147 [19] under the non-standard
evaluation protocol [35].

Validation set Test set

Method MAE (↓) RMSE(↓) AP(↑) AP50(↑) MAE(↓) RMSE(↓) AP(↑) AP50(↑)

PSECO [35] 15.31 2 68.34 2 32.71 2 62.03 2 13.05 2 112.86 2 43.53 2 74.64 2
GeCo (ours) 9.52 1 43.00 1 34.07 1 64.23 1 7.91 1 54.28 1 43.89 1 76.18 1

Performance in crowded scenes. To evaluate counting performance in crowded scenes, we con-
structed a subset of the FSCD147 test set by including images with at least 200 objects and a maximal
average exemplar size of 30 pixels. Notably, the new subset contains 42 images, averaging 500
objects per image, thus featuring dense scenes with small objects. Three top-performing methods
from Table 1 were included in the comparison and are shown in Table 8. GeCo outperforms both
PSECO and DAVE by a significant margin, e.g., outperforming DAVE by 23% in MAE and 36% in
RMSE, which demonstrates superior counting performance on small, densely populated objects.

Table 8: Few-shot counting in crowded scenes, comparing the top-three detection-based counters
from Table 1.

MAE RMSE

PSECO [35] CVPR24 173.64 594.91
DAVE [20] CVPR24 81.38 383.93
GeCo (ours) 62.60 242.82

Qualitative results. Figure 5 compares GeCo with PSECO [35], which achieves the best AP/AP50
measures among the related counters. GeCo shows robust performance, achieving high precision
(see Figure 5 block 1), while achieving high recall (see Figure 5 block 2). This is challenging for
related methods, particularly in densely populated scenes or with small objects. Furthermore, GeCo
outperforms PSECO on elongated or more complex objects (see Figure 5 block 3), better exploiting
the exemplars.
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Figure 5: Comparison of few-shot counting on FSCD147. Exemplars are shown with red color and
ERR indicates count error.
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Figure 6 visualizes the segmentations produced by GeCo, in a few-shot setup, of various objects
in diverse scenes. GeCo is robust to noise, achieves discriminative segmentations, and performs
well on elongated, non-blob-like objects and in dense scenarios. Figure 7 compares GeCo with all
state-of-the-art detection counters [20; 19; 35]. GeCo achieves superior counting performance, and
predicts more accurate bounding boxes.

Figure 6: Segmentation quality of GeCo on diverse set of scenes and object types. Exemplars are
denoted by red bounding boxes.
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Figure 7: Comparison of few-shot counting and detection on FSCD147. ERR indicates count error.
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In Figure 8 performance of GeCo is qualitatively demonstrated on examples with high intra-class
variance. Image (a) displays marbles of various colors and textures (notable visual intra-class
variance), all correctly detected and still distinguished from a visually similar coin. Example (b)
shows donuts with different colors of decorations, all accurately counted and detected by GeCo.
Image (c) contains bottles of various sizes, shapes, and colors, each with a distinct sticker. Image (d)
features transparent food containers with differently colored and shaped fruits inside, successfully
detected despite significant visual diversity. Examples (e) and (f) illustrate GeCo’s robustness in
detecting objects with high shape variance, including partially visible birds (notable object shape
intra-class variance).

ERR: 0

(e)

ERR: 0

(f )

ERR: 0

(a)

ERR: 0

(b)

ERR: 1

(c)

ERR:  7

(d)

Figure 8: Few-shot detection and counting with GeCo on images with high intra-class object
appearance variation. Orange and red bounding boxes denote detections and exemplars, respectively.
Count error is denoted by ERR.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we stress out the main contributions, and
results of the presented method.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the main limitation of the presented method in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not derive theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method is clearly described, making it possible to re-implement. We will
make the code publically available upon acceptance.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Upon acceptance, we will make the code and models publically available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper clearly specifies all implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars and statistical significance are not reported by state-of-the-art
methods in their respective papers. We omit the usage of error bars, as it would be too
computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the implementation details we clearly state the computer resources needed
to train presented model.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed the Code of Ethics and found no violations in our work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work will not make any societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our data and models are not a risk of misuse.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all respective papers of publically available benchmarks and datasets
used in our work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: We do not conduct research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not include any research with human subjects.
Guidelines:

• We do not conduct research with human subjects.
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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